翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

projective object : ウィキペディア英語版
projective object
In category theory, the notion of a projective object generalizes the notion of a projective module.
An object ''P'' in a category C is projective if the hom functor
: \operatorname(P,-)\colon\mathcal\to\mathbf
preserves epimorphisms. That is, every morphism ''f:P→X'' factors through every epi ''Y→X''.
Let \mathcal be an abelian category. In this context, an object P\in\mathcal is called a ''projective object'' if
: \operatorname(P,-)\colon\mathcal\to\mathbf
is an exact functor, where \mathbf is the category of abelian groups.
The dual notion of a projective object is that of an injective object: An object Q in an abelian category \mathcal is ''injective'' if the \operatorname(-,Q) functor from \mathcal to \mathbf is exact.
==Enough projectives==
Let \mathcal be an abelian category. \mathcal is said to have enough projectives if, for every object A of \mathcal, there is a projective object P of \mathcal and an exact sequence
:P \longrightarrow A \longrightarrow 0.
In other words, the map p\colon P \to A is "epi", or an epimorphism.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「projective object」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.